Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 153: 109953, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34847439

RESUMEN

Phytases are hydrolytic enzymes capable of a stepwise phosphate release from phytate which is the main phosphorous storage in seeds, cereals and legumes. Limitations such as low enzyme activity or incomplete phytate hydrolysis to inositol are a great challenge in phytase applications in food and feed. Herein we report a phytase blend of two enzymes with additive effects on phytate (InsP6) hydrolysis and its application in the enzymatic phosphorous recovery process. Blending the fast 6-phytase rPhyXT52 with the 3-phytase from Debaryomyces castellii, which is capable of fully hydrolyzing InsP6, we achieved rapid phosphate release with higher yields compared to the individual enzymes and a rapid disappearance of InsP6-3 intermediates, monitored by HPLC. NMR data suggest a nearly complete phytate hydrolysis to inositol and phosphate. The blend was applied for phosphate mobilization from phytate-rich biomass, such as deoiled seeds. For this emerging application, an up to 43% increased phosphate mobilization yield was achieved when using 1000 U of the blend per kg biomass compared to using only the E. coli phytase. Even so, the time of enzyme treatment was decreased by more than half (6 h instead of 16 h) when using 4000 U of blend, we reached a 78-90% reduction of the total phosphorous content in the explored deoiled seeds. In summary, the phytase blend of Dc phyt/rPhyXT52 was proven very efficient to obtain inositol phosphate depleted meal which has its potential application in animal feeding and is concomitant with the production of green phosphate from renewable resources.


Asunto(s)
6-Fitasa , Escherichia coli , Semillas
2.
J Biotechnol ; 339: 14-21, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34271055

RESUMEN

Being able to recombine more than two genes with four or more crossover points in a sequence independent manner is still a challenge in protein engineering and limits our capabilities in tailoring enzymes for industrial applications. By computational analysis employing multiple sequence alignments and homology modeling, five fragments of six phytase genes (sequence identities 31-64 %) were identified and efficiently recombined through phosphorothioate-based cloning using the PTRec method. By combinatorial recombination, functional phytase chimeras containing fragments of up to four phytases were obtained. Two variants (PTRec 74 and PTRec 77) with up to 32 % improved residual activity (90 °C, 60 min) and retained specific activities of > 1100 U/mg were identified. Both variants are composed of fragments from the phytases of Citrobacter braakii, Hafnia alvei and Yersinia mollaretii. They exhibit sequence identities of ≤ 80 % to their parental enzymes, highlighting the great potential of DNA recombination strategies to generate new enzymes with low sequences identities that offer opportunities for property right claims.


Asunto(s)
6-Fitasa , 6-Fitasa/genética , Citrobacter/enzimología , Estabilidad de Enzimas , Hafnia alvei/enzimología , Concentración de Iones de Hidrógeno , Proteínas Recombinantes de Fusión , Yersinia/enzimología
3.
Appl Microbiol Biotechnol ; 103(16): 6435-6448, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31254000

RESUMEN

Phytases are important industrial enzymes able to catalyze the release of up to six phosphates from phytate in a stepwise hydrolysis reaction. Phytases are almost exclusively used as a feed supplement. However, phytases are also used in human nutrition, food processing, non-food industrial products, and emerging applications like enzymatic phosphate recovery from renewable resources. Phytate, the main phosphorus storage form in seeds, and its hydrolysis products act as a chelator and reduce protein and mineral bioavailability in intestinal absorption. Full phosphate hydrolysis from the common storage compound phytate remains a challenge. Phytate hydrolysis patterns of tailored phytases and their protein engineering campaigns are discussed. The aim of our review is to give an overview on developed and emerging application areas (animal nutrition, food processing, and environmental resource management) and thereby generate an awareness for the importance of phosphorus stewardship in a circular bioeconomy. Emphasis will be given to processes using organic-bound phosphorus and related recycling strategy of this valuable resource. In detail, the main challenge in designing phytases to completely hydrolyze phosphate from phytate to inositol and the need for engineering campaigns to broaden their industrial use are described.


Asunto(s)
6-Fitasa/genética , 6-Fitasa/metabolismo , Biotecnología/métodos , Fosfatos/metabolismo , Ácido Fítico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Humanos , Hidrólisis , Ingeniería de Proteínas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...